资源类型

期刊论文 173

年份

2024 1

2023 20

2022 16

2021 17

2020 14

2019 6

2018 9

2017 8

2016 7

2015 4

2014 4

2013 11

2012 7

2011 6

2010 11

2009 7

2008 8

2007 7

2005 3

2004 1

展开 ︾

关键词

低温SOFC 2

固体氧化物燃料电池 2

柔性机器人 2

液体燃料 2

电导率 2

电解质 2

N-糖组 1

CCD影像 1

CO2 加氢 1

N-聚糖 1

NASICON 1

TOC 1

TRIZ 1

[BMIm]PF6 1

[C6MIm]PF6 1

[PMIm]PF6 1

三相界面 1

中药 1

主-客体化学 1

展开 ︾

检索范围:

排序: 展示方式:

Modeling the methyldiethanolamine-piperazine scrubbing system for CO

Stefania Moioli,Laura A. Pellegrini

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 162-175 doi: 10.1007/s11705-016-1555-5

摘要: Aqueous solutions of methyldiethanolamine (MDEA) and piperazine (PZ) are commonly used solvent nowadays. In this work a thermodynamic analysis with the Electrolyte-NRTL model has been performed for systems composed of acidic gases and MDEA+PZ aqueous solution. ASPEN Plus has been used for thermodynamic modeling. Values of binary interaction parameters for liquid phase activity coefficients have been estimated from regressions of experimental data. Moreover, the influence of the interactions between ion pairs and MDEA or PZ molecular species has been analyzed. The final aim is to obtain a reliable tool for design and simulation of absorption and stripping columns, fundamentals also in order to carry out energy saving studies.

关键词: vapor-liquid equilibrium     methyldietanolamine     piperazine     regression     Electrolyte-NRTL    

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 387-394 doi: 10.1007/s11705-022-2250-3

摘要: Porous carbons with high specific area surfaces are promising electrode materials for supercapacitors. However, their production usually involves complex, time-consuming, and corrosive processes. Hence, a straightforward and effective strategy is presented for producing highly porous carbons via a self-activation procedure utilizing zinc gluconate as the precursor. The volatile nature of zinc at high temperatures gives the carbons a large specific surface area and an abundance of mesopores, which avoids the use of additional activators and templates. Consequently, the obtained porous carbon electrode delivers a satisfactory specific capacitance and outstanding cycling durability of 90.9% after 50000 cycles at 10 A∙g–1. The symmetric supercapacitors assembled by the optimal electrodes exhibit an acceptable rate capability and a distinguished cycling stability in both aqueous and ionic liquid electrolytes. Accordingly, capacitance retention rates of 77.8% and 85.7% are achieved after 50000 cycles in aqueous alkaline electrolyte and 10000 cycles in ionic liquid electrolyte. Moreover, the symmetric supercapacitors deliver high energy/power densities of 49.8 W∙h∙kg–1/2477.8 W∙kg–1 in the Et4NBF4 electrolyte, outperforming the majority of previously reported porous carbon-based symmetric supercapacitors in ionic liquid electrolytes.

关键词: self-activation     zinc organic salts     abundant mesopores     symmetric supercapacitor     liquid electrolyte    

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1354-1371 doi: 10.1007/s11705-022-2286-4

摘要: With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.

关键词: high-concentration electrolyte     localized high-concentration electrolyte     lithium metal battery     solid electrolyte interphase     dendrite    

Boosting the direct conversion of NHHCO electrolyte to syngas on Ag/Zn zeolitic imidazolate framework

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1196-1207 doi: 10.1007/s11705-022-2289-1

摘要: The electrochemical reduction of NH4HCO3 to syngas can bypass the high energy consumption of high-purity CO2 release and compression after the ammonia-based CO2 capture process. This technology has broad prospects in industrial applications and carbon neutrality. A zeolitic imidazolate framework-8 precursor was introduced with different Ag contents via colloid chemical synthesis. This material was carbonized at 1000 °C to obtain AgZn zeolitic imidazolate framework derived nitrogen carbon catalysts, which were used for the first time for boosting the direct conversion of NH4HCO3 electrolyte to syngas. The AgZn zeolitic imidazolate framework derived nitrogen carbon catalyst with a Ag/Zn ratio of 0.5:1 achieved the highest CO Faradaic efficiency of 52.0% with a current density of 1.15 mA·cm–2 at –0.5 V, a H2/CO ratio of 1–2 (–0.5 to –0.7 V), and a stable catalytic activity of more than 6 h. Its activity is comparable to that of the CO2-saturated NH4HCO3 electrolyte. The highly discrete Ag-Nx and Zn-Nx nodes may have combined catalytic effects in the catalysts synthesized by appropriate Ag doping and sufficient carbonization. These nodes could increase active sites of catalysts, which is conducive to the transport and adsorption of reactant CO2 and the stability of *COOH intermediate, thus can improve the selectivity and catalytic activity of CO.

关键词: Ag catalyst     zeolitic imidazolate framework     CO2 electroreduction     ammonium bicarbonate electrolyte     syngas    

A review on the development of electrolytes for lithium-based batteries for low temperature applications

《能源前沿(英文)》 2023年 第17卷 第1期   页码 43-71 doi: 10.1007/s11708-022-0853-5

摘要: The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers. This equipment is exposed to extremely low temperatures in space or on the Martian surface. The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity. Various solvents, cosolvents, additives, and salts have been researched to fine tune the conductivity, solvation, and solid-electrolyte interface forming properties of the electrolytes. Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures. Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components. As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise, new materials also need to be adopted involving next generation lithium-ion chemistry to increase available capacity. With these objectives in mind, tailoring of the electrolyte with higher-capacity materials such as lithium metal and silicon anodes at low temperatures is of high priority. This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.

关键词: electrolyte     lithium-ion     low temperature     aerospace     solid-electrolyte interface    

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 577-591 doi: 10.1007/s11705-018-1758-z

摘要:

Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation–also required for high energy density batteries–by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.

关键词: lithium-ion     electrolyte     solid electrolyte interphase     additives     high voltage     graphite    

Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys

Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1065-1071 doi: 10.1007/s11705-019-1909-x

摘要: Micro-arc oxidation (MAO) is an efficient approach to improve the hardness, wear resistance, and other properties of aluminum alloys. In order to investigate the effect of the electrolyte concentration on the properties of MAO coatings for LY12 alloy, the voltage variation during the MAO process was recorded. The surface morphologies and phase compositions of the coatings produced with different electrolytes were investigated using scanning electron microscopy and X-ray diffraction, respectively. The roughness and thickness of the coatings were measured using a pocket roughness meter and an eddy-current thickness meter, respectively. The tribological performances of the coatings were investigated against GCr15 bearing steel on a ball-on-disc wear tester in open air. The results showed that with an increase in the Na SiO content, the working voltage of the MAO process decreased, the roughness and thickness of the coatings increased significantly, and the relative content of the -Al O phase decreased. With an increase in the KOH content, the working voltage decreased slightly, the roughness and thickness of the coatings increased slightly, and the α- and -Al O phase contents remained unchanged. The friction coefficient and wear rate of the coatings increased with an increase in the Na SiO and KOH concentrations. A decrease in the porosity and roughness and an increase in the α-Al O content of the coatings reduced their wear mass loss.

关键词: aluminum alloy     micro-arc oxidation     coating     electrolyte concentration     tribological performance    

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 334-364 doi: 10.1007/s11708-017-0490-6

摘要: Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

关键词: polymer electrolyte fuel cell     ultra-thin catalyst layer     electrostatic interactions     characterization and modeling     structure-property-performance relation     water management    

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1323-1335 doi: 10.1007/s11705-022-2275-7

摘要: Liquid–liquid mixing, including homogeneous and heterogeneous mixing, widely exists in the chemical industry. How to quantitatively characterize the mixing performance is important for reactor assessment and development. As a convenient and direct method for mixing characterization, the chemical probe method uses some special test reactions to characterize the mixing results. Here, the working principle and selection requirements of this method are introduced, and some common chemical probe systems for homogeneous and heterogeneous mixing processes are reviewed. The characteristics and applications of these systems are illustrated. Finally, the development of the new system is proposed.

关键词: mixing     chemical probe     liquid–liquid     heterogeneous    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

低温固体氧化物燃料电池的复合电解质材料

谢富丞,王诚,毛宗强

《中国工程科学》 2013年 第15卷 第2期   页码 72-76

摘要:

固体氧化物燃料电池(SOFC)是一种高效、环保的发电装置。低温化是SOFC的主要发展方向。探索适合在低温(400~600 ℃)条件下操作的高性能电解质材料是SOFC低温化发展的关键。近年来,研究人员发展了新型的复合电解质材料,取得了较好的成果。本文综述了近年来低温SOFC复合电解质材料的研究进展,简要介绍了复合电解质材料的特点、类型和传导机理。

关键词: 低温SOFC     复合电解质     传导机理    

Microfluidic production of liposomes through liquidliquid phase separation in ternary droplets

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 1017-1022 doi: 10.1007/s11705-021-2118-y

摘要: Liposomes, the self-assembled phospholipid vesicles, have been extensively used in various fields such as artificial cells, drug delivery systems, biosensors and cosmetics. However, current microfluidic routes to liposomes mostly rely on water-in-oil-in-water double emulsion droplets as templates, and require complex fabrication of microfluidic devices, and tedious manipulation of multiphase fluids. Here we present a simple microfluidic approach to preparing monodisperse liposomes from oil-in-water droplets. For demonstration, we used butyl acetate-water-ethanol ternary mixtures as inner phase and an aqueous solution of surfactants as outer phase to make oil-in-water droplets, which can evolve into water-in-oil-in-water double emulsion droplets by liquid–liquid phase separation of ternary mixtures. Subsequently, the resultant water-in-oil-in-water droplets underwent a dewetting transition to form separated monodisperse liposomes and residual oil droplets, with the assistance of surfactants. The method is simple, does not require complex microfluidic devices and tedious manipulation, and provides a new platform for controllable preparation of liposomes.

关键词: microfluidics     liposomes     ternary droplets     phase separation    

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 365-373 doi: 10.1007/s11708-017-0500-8

摘要: Lithium manganese oxide (LiMn O ) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn O . Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn O ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn O surface is the primary reason for reduced cell life in LiMn O batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn in this interface layer are not yet well understood. To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn O cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxidation products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electrolyte solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.

关键词: lithium manganese oxide batteries     reactive force field (ReaxFF)     cathode-electrolyte interface layer     molecular dynamics    

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

《能源前沿(英文)》 2023年 第17卷 第4期   页码 516-526 doi: 10.1007/s11708-022-0844-6

摘要: A two-stage gas-coupled Stirling/pulse tube refrigerator (SPR), whose first and second stages respectively involve Stirling and pulse tube refrigeration cycles, is a very promising spaceborne refrigerator. The SPR has many advantages, such as a compact structure, high reliability, and high performance, and is expected to become an essential refrigerator for space applications. In research regarding gas-coupled regenerative refrigerator, the energy flow distribution between the two stages, and optimal phase difference between the pressure wave and volume flow, are two critical parameters that could widely influence refrigerator performance. The effects of displacer displacement on the pressure wave, phase difference, acoustic power distribution, and inter-stage cooling capacity shift of the SPR have been investigated experimentally. Notably, to obtain the maximum first-stage cooling capacity, an inflection point in displacement exists. When the displacer displacement is larger than the inflection point, the cooling capacity could be distributed between the first and second stages. In the present study, an SPR was designed and manufactured to work between the liquid hydrogen and liquid oxygen temperatures, which can be used to cool small-scale zero boil-off systems and space detectors. Under appropriate displacer displacement, the SPR can reach a no-load cooling temperature of 15.4 K and obtain 2.6 W cooling capacity at 70 K plus 0.1 W cooling capacity at 20 K with 160 W compressor input electric power.

关键词: Stirling/pulse tube refrigerator     displacer displacement     space application     phase shift     energy distribution    

固体氧化物燃料电池的电解质及电极材料的电导率研究方法

贺贝贝,潘 鑫,夏长荣

《中国工程科学》 2013年 第15卷 第2期   页码 57-65

摘要:

论述了晶体材料,重点是固体氧化物燃料电池组件的导电机理,介绍了影响电导率的几个因素。针对不同的电解质和电极材料,讨论了几种常用的测量电解质和电极总电导率、电子电导率以及离子电导率的方法,并指出在测量中需要注意的问题。

关键词: 导电机理     电解质     电极     电导率     固体氧化物燃料电池    

标题 作者 时间 类型 操作

Modeling the methyldiethanolamine-piperazine scrubbing system for CO

Stefania Moioli,Laura A. Pellegrini

期刊论文

Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density

期刊论文

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

期刊论文

Boosting the direct conversion of NHHCO electrolyte to syngas on Ag/Zn zeolitic imidazolate framework

期刊论文

A review on the development of electrolytes for lithium-based batteries for low temperature applications

期刊论文

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

期刊论文

Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys

Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang

期刊论文

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

期刊论文

Chemical probe systems for assessing liquidliquid mixing efficiencies of reactors

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

期刊论文

低温固体氧化物燃料电池的复合电解质材料

谢富丞,王诚,毛宗强

期刊论文

Microfluidic production of liposomes through liquidliquid phase separation in ternary droplets

期刊论文

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

期刊论文

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

期刊论文

固体氧化物燃料电池的电解质及电极材料的电导率研究方法

贺贝贝,潘 鑫,夏长荣

期刊论文